Name:	Date:
-------	-------

Reading: Gases that Vibrate

Many years ago, Eunice Foote was trying to answer some of the same questions you have been asking. She was curious about the gases in the atmosphere and their role in the temperature of the atmosphere. Foote used glass cylinders filled with different gases and placed the cylinders in the sunlight and recorded the temperature. She discovered that some of the cylinders of gas heated up more than others. Can you guess which ones?

Foote reported the following in 1856: "The highest effect of the sun's rays I have found to be in carbonic acid gas." Carbonic acid gas is what we know now as carbon dioxide. She was the first to conclude that "An atmosphere of that gas would give to our earth a high temperature...." Eunice Foote's contribution often goes unnoticed. As a woman, she was not allowed to present her work at science conferences or publish like male scientists. It was a few years later that John Tyndall published a paper identifying the gases responsible for warming our atmosphere. He is often given credit for this discovery, even though Eunice Foote was first to make these claims.

Eunice Foote concluded that carbon dioxide causes our atmosphere to warm. How does carbon dioxide do that? What makes carbon dioxide so special? Water vapor and methane also cause the air to warm. Gases like these absorb energy or heat. The atoms in the molecules of these gases can move within the molecule— they vibrate. Because of their structure, these gases vibrate when heat is transferred to the molecule. Once they start to vibrate,

382 0	the Heat in t	he Sun's Rays		100			Map of the Unite		383
My investigation lifferent circumstate of light that proce Several results h	by Eunic, the American Ass as have had for noces that affect ed from the su have been obta an increases w	e Foore. sociation, August 2 or their object t the thermal s n. ined. ith the densis	ad, 1854.) to determine the	served. that prec think, be moisture Thirdl be in car One o	Who hedes a so found to in differ y. The bonic ac	as not experi immer's show to be much a ent places, highest effect id gas, ceivers was f result was as	moist air has fr enced the burnis ver? The isoths iffected by the d t of the sun's ray illed with it, the follows:	g beat of ermal lines ifferent dep is I have for other wi	the sun s will, I grees of ound to
The experiment	s were made w	ith an air-pun	ap and two cylin-	No.	In shade.	In rea.	I le shair.	In sun.	-
drical receivers of ter and thirty in le and the air was ex	ngth. In each	were placed t	wo thermometers,		80 81 80 81	90 94 99 100	80 84 84 85	90 100 110 120	
In shade. 15 76 80 83	ted Tube In equ. 50 82 82 85	Condens Is shede, 75 78 80 82	nd Tube. In sun. 80 95 100 105	On cor be in h	l weight nparing vdrogen	must have no the sun's bea	from its own acti- cossarily resulted t in different ga- in common air, id gas, 125°.	i. ses, I foun	d it to
different places, as the summits of lot Secontly. The in moist than in d In one of the re in the other it was Both were places follows:	nd contribute to ity mountains, action of the so ry air. ocivers the air dried by the u	o produce thei m's rays was fo was saturated use of chlorid o	with moisture— of calcium. the result was as	Grate Group Group and wide regarded This is in which the goole any appe The re has appe	States a P. Blak GICAL r ly circul by us w sore espe se geogr ogy has sent geo ared in	and British Proc. saps of the I ated among I with no small beially true, washy has onl never before accuracy. logical map at the Annales	ertion of the Geo ovinces by Jules h Inited States pub Juropean geologis degree of attenti- then such maps e y recentily been i been laid down des Mines and i	slished in- ts, are nec- on and cu mbrace reg- made know on a ma J. Marcou a the Bul	Europe essarily priosity. pions of wn and p with which letin of
78 82 82 82 82 83	88 102 104 105 108	78 82 82 82 82 92	90 106 110 114 120	Also with th	Julea Mar- be followin	COL Annales de	et des Provinces Angle Mines, 24 Série, T. Ogique des Etats-Uni um profil géologique me planche de fessiles anox. Mai, 1855, p. 81	and designed	

they release that heat back into the atmosphere in all directions. Most of the heat from Earth's warmed surface goes into space, but the heat released from these gases causes the atmosphere to warm because they send some heat back to Earth. This process is called the **greenhouse effect**.

Gases that absorb and release heat in the atmosphere are called **greenhouse gases** (GHGs). Three of the most important greenhouse gases include water vapor (H₂O), carbon dioxide (CO₂), and methane (CH₄). We would not be able to survive on Earth if we didn't have greenhouse gases—it would be too cold! These gases help to warm our planet. So, they are not bad gases—they are necessary for life on Earth!

A very important GHG is water vapor. Have you ever thought about why we are not worried about water vapor building up in the atmosphere? The amount of water vapor in the atmosphere stays about the same, though it's going up a little as the temperatures get warmer. If the amount of water gets too high, the water cycle takes care of it. Water condenses and falls as precipitation. However, we know that some GHGs are increasing in our atmosphere—carbon dioxide and methane, for example. They cannot fall out of the atmosphere as precipitation like water vapor can.